Sabtu, 27 April 2013


Augustin Louis Cauchy' (ogysˈtɛ̃ lwi koˈʃi, 1789-1857) ialah seorang matematikawan Perancis.

Dilahirkan di Paris dan dididik di Ecole Polytechnique. Karena kesehatan yang buruk ia dinasihatkan untuk memusatkan pikirannya pada matematika. Selama karirnya, ia menjabat sebagai mahasuru di École Politechnique, Sorbonne, dan College de France. Sumbangan-sumbangan matematikanya cemerlang dan mengejutkan jumlahnya. Produktivitasnya amat hebat hingga Akademi Paris memilih untuk membatasi ukuran makalahnya dalam majalah ilmiah untuk mengatasi keluaran dari Cauchy.

Cauchy ialah seorang Katholik yang saleh dan pengikut Raja yang patuh. Dengan menolak bersumpah setia kepada pemerintahan Prancis yang berkuasa pada 1830, ia pindah ke Italia selama beberapa tahun dan mengajar di beberapa institusi keagamaan di Paris sampai sumpah kesetiaan dihapuskan setelah Revolusi 1848.

Cauchy memiliki perhatian yang luas. Ia mencintai puisi dan mengarang suatu naskah dalam ilmu persajakan dalam bahasa Ibrani. Keimanannya dalam beragama mengantarnya mendukung kerja sosial untuk ibu-ibu tanpa nikah dan narapidana.

Meski kalkulus diciptakan pada akhir abad ke-17, dasar-dasarnya tetap kacau dan berantakan sampai Cauchy dan rekannya Carl Friedrich Gauß, Niels Henrik Abel, dan Bernard Bolzano mengadakan ketelitian baku.

Sejarah singkat.

masa kecil
Kutipan di atas rasanya cocok untuk menggambarkan pribadi Cauchy, dimana dia terkait dengan dua hal yang disebut awal: agama dan sains. Tidak ada yang memperkirakan bahwa Louis-Francois Cauchy tidak terjamah guilotin. Posisinya sebagai pengacara parlemen, bangsawan, seorang intelektual, penentang agama Katholik dan menjadi letnan polisi di Paris ketika Bastille jatuh. Dua tahun menjelang revolusi Perancis, dia menikah dengan Marie Madeleine Desestre, yang dikarunai dengan wajah nan rupawan meskipun kurang terpelajar, namun mempunyai satu kesamaan, yaitu: membenci agama Katholik. Augustin Louis Cauchy lahir kurang dari 6 minggu setelah terjadi revolusi Perancis, adalah anak sulung dari 6 anak (dua laki dan 4 perempuan). Masa kecil Cauchy adalah periode berdarah. Sekolah-sekolah ditutup. Terjadi kevakuman dalam ilmu pengetahuan atau kebudayaan, komunitas mulai meninggalkan kebudayaan dan ilmu pengetahuan agar tidak ditangkap, masuk penjara atau diguilotin. Guna menghindari hal-hal buruk itu, ketika umur Cauchy empat tahun, mereka sekeluarga pindah ke desa kecil, Arcueil. Mengungsi memang mampu menghindari diri mereka dari teror, namun membiarkan diri mereka menderita kelaparan. Setiap hari menderita “setengah” kelaparan dan hanya mampu memberi makan istri dan anak-anaknya dengan buah-buahan dan sayur-sayuran yang dapat mereka tanam seadanya atau dari belas kasihan para tetangga. Akibatnya, mudah diduga, Cauchy mudah terserang penyakit dan pertumbuhan fisiknya terhambat. Menjelang umur 20 tahun, Cauchy baru mampu menanggulangi kurang gizi (malnutrisi) semasa kecil, walaupun sepanjang hidupnya terus berjuang untuk memperbaiki kesehatan.
Untuk memberi pendidikan anak-anaknya dilakukan oleh Cauchy senior dengan menulis sendiri buku-buku teks, banyak diantaranya berupa puisi. Puisi dipercayainya tersusun oleh tata bahasa yang benar. Hal ini membuat tata-bahasa Cauchy sangat buruk. Anak-anaknya mulai dijejali dengan pelajaran sejarah selain moral penuh dengan sinisme.

Bertetangga dengan Laplace
Pada perbatasan desa Arcueil terdapat rumah Laplace dan Claude-Louis Berthollet [1748 – 1822], dimana nama kedua diguilotin karena tahu bagaimana membuat mesiu. Keduanya adalah sahabat karib. Kebun mereka hanya dipisahkan oleh tembok dimana-mana masing-masing memberikan kunci duplikatnya kepada yang lainnya. Cauchy senior, dalam upaya menutup setengah kelaparan pergi kedua orang tetangganya ini yang tidak pernah kekurangan makanan. Suatu hari, sewaktu Cauchy senior mengajak si kecil pergi ke rumah Berthollet yang tidak pernah ke luar rumah dimana Laplace sedang bertamu, Laplace terkesan dengan penampilan anak itu. Penampilan seperti anak biasa namun memandang buku-buku dan makalah-makalah yang bertebaran dengan mata tidak berkedip dan tampaknya sangat menyukai. Beberapa saat kemudian, Laplace mengetahui bahwa anak ini mempunyai bakat matematika istimewa dan memberi nasihat agar Cauchy senior mengajarinya matematika.
Beberapa tahun kemudian, Laplace mengikuti kuliah dari Cauchy tentang deret tak-terhingga (infinite series) disertai dengan ketakutan bahwa penemuan anak ini tentang konvergensi dapat menghancurkan seluruh mekanika alam semesta (celestial) yang menjadi andalannya. Kompetensinya terancam karena semua perhitungannya didasarkan pada divergen. Beruntunglah Laplace karena intuisi astronomikalnya jauh dari bencana, setelah dia menguji ulang perhitungannya tentang deret dengan metode konvergensi dari Cauchy yang kemudian disebut dengan metode Cauchy.

Bertemu dengan Lagrange
Awal tahun 1800, secara diam-diam Cauchy senior bersama keluarga kembali ke Paris dan terpilih sebagai sekretaris senat. Menempati kantor di Luxembourg Palace dan Cauchy kecil mendapat jatah ruangan di pojok. Lagrange – profesor matematika dari Polytechnique – sering datang dan diskusi tentang bisnis dengan Cauchy senior. Lagrage tertarik – seperti halnya Laplace – tertarik dengan anak kecil yang memendam bakat matematika. Dalam suatu kesempatan Laplace dan banyak pakar lain yang hadir, Lagrange menuding Cauchy kecil yang duduk di pojok seraya berkata, “Anda semua, lihatlah anak itu? Dia akan menjadi penerus kita semua sebagai matematikawan.”
Langrange memberi nasihat kepada Cauchy senior, “Agar tidak mematikan bakatnya, jauhkan anak ini dari buku matematika sampai usianya mencapai tujuh-belas tahun.” Yang dimaksud oleh Lagrange adalah matematika tingkat tinggi. Dalam kesempatan lain disebutkan, “Jika anda tidak dapat memberi pelajaran tentang tata-bahasa maka semangatnya akan padaml Dia akan menjadi matematikawan besar tapi dia sendiri tidak tahu bagaimana menulis dengan bahasanya sendiri.” Nasihat dari matematikawan besar perlu dituruti. Sebagai tindak-lanjutnya, Cauchy senior mengajar tata-bahasa sebelum membiarkan anaknya menekuni matematika tingkat tinggi.

Semua usaha ayahnya ini membuahkan hasil. Cauchy diterima di Central School of Pantheon pada kisaran usia tiga-belas tahun. Lewat prestasi di sekolah dengan menjadi bintang kelas, Cauchy piawai dalam sejarah Yunani, bahasa Latin dan puisi dalam bahasa Latin memperoleh hadiah pertama dari Napoleon.

Menjadi pasukan Napoleon
Selanjutnya, selama sepuluh bulan, Cauchy mempelajari matematika secara intensif dengan bimbingan seorang ahli. Tahun 1805, pada usian enam-belas tahun diterima pada Polytechnique. Sifat membenci agama Katholik, hasil doktrin kedua orang tuanya, membuat dirinya dibenci oleh teman-temannya lewat pandangan-pandangan agama yang terkadang dikemukakannya. Lulus dari Polytechinue, Cauchy melanjutkan pada bidang teknik sipil pada tahun 1807. Setelah lulus, mengabdikan diri kepada Napoleon. Bulan Maret 1810, Cauchy meninggalkan Paris pergi ke Cherbourg, memasuki kancah perang Waterloo, selama lima tahun. Sebelum menyerang dengan ratusan ribu pasukan, perlu dibangun pelabuhan-pelabuhan dan benteng-benteng untuk menahan kapal musuh. Napoleon mempunyai pengharapan bahwa dia dapat mengalahkan pasukan Inggris. Diharapkan kemenangan ini merupakan peristiwa penting kedua setelah runtuhnya Bastille.
Tugas Cauchy selama di Cherbourg adalah insinyur militer (baca: Poncelet). Sebelum keberangkatnya, Cauchy membawa empat buku: karangan Laplace (Mecanique Celeste), karangan Langrange (Traite des fonctions analytique), Thomas Kempis (Imitation of Christ) dan sebuah manual perang sebagai buku wajib bagi prajurit.
Selama tiga tahun di Cherbourg, Cauchy ternyata dapat “menikmati” kehidupan itu. Bangun dini hari, kerja keras sampai malam hari. Membangun barak untuk tahanan perang asal Spanyol adalah pekerjaan sehari-hari, membuat tubuh Cauchy berangsur sehat.

Kembali ke Matematika
Kembali dari Cherbourg, pada awal Desember 1810, Cauchy menekuni matematika. Diawali dengan belajar aritmatika dan berakhir dengan astronomi, menyederhanakan pembuktian dan menemukan proposisi-proposisi baru dengan menggunakan metode-metodenya menjadi pekerjaan sehari-hari. “Tragedi” di Moskow (baca: Poncelet) pada tahun 1812, perang dengan Prussia dan Austria (baca: Gauss) membuat impian Napoleon untuk menyerbu Inggris urung, dan pekerjaan di Cherbourg ditunda. Masih berumur 24 tahun dan tahun 1813, Cauchy kembali ke Paris. Saat ini dia melakukan penelitian matematika brilian agar layak disebut matematikawan terkemuka Perancis, seperti yang pernah diucapkan oleh Lagrange, nubuat untuk digenapi. Topik yang menjadi pokok penelitian adalah polyhedra dan fungsi-fungsi asimetris.

Awal tahun 1811, Cauchy mengeluarkan makalah perdananya tentang polyhedra *), yang mempunyai sisi lebih dari sekedar 2, 4, 6, 12 atau 20 sisi. Disusul dengan makalah kedua, dengan mengembangkan rumus dari Euler tentang geometri bidang, dengan menghubungkan jumlah sudut (S), permukaan (M), (garis) verteks (V) dari polyhedron, S + 2 = M + V. Makalah ini kemudian dicetak, dan Legendre menyuruh Cauchy melanjutkan meskipun Malus (1775 –1812) menyebutkan bahwa ada yang salah dengan rumus itu, namun Malus tidak dapat menunjukkan bagian mana yang salah.

Jumat, 26 April 2013


BIOGRAFI FIBONACCI

Perkembangan matematika pada abad pertengahan di Eropa seiring dengan lahirnya Leonardo dari Pisa yang lebih dikenal dengan julukan Fibonacci (artinya anak Bonaccio). Bonaccio sendiri artinya anak bodoh, tapi dia bukan orang bodoh karena jabatannya adalah seorang konsul yang wewakili Pisa. Jabatan yang dipegang ini membuat dia sering bepergian. Bersama anaknya, Leonardo, yang selalu mengikuti ke negara mana pun dia melakukan lawatan.


Fibonacci menulis buku Liber Abaci setelah terinspirasi pada kunjungannya ke Bugia, suatu kota yang sedang tumbuh di Aljazair. Ketika ayahnya bertugas di sana, seorang ahli matematika Arab memperlihatkan keajaiban sistem bilangan Hindu-Arab. Sistem yang mulai dikenal setelah jaman Perang Salib. Kalkulasi yang tidak mungkin dilakukan dengan menggunakan notasi (bilangan) Romawi. Setelah Fibonacci mengamati semua kalkulasi yang dimungkinkan oleh sistem ini, dia memutuskan untuk belajar pada matematikawan Arab yang tinggal di sekitar Mediterania. Semangat belajarnya yang sangat mengebu-gebu membuat dia melakukan perjalanan ke Mesir, Syria, Yunani, Sisilia.

Mengarang buku
Tahun 1202 dia menerbitkan buku Liber Abaci dengan menggunakan – apa yang sekarang disebut dengan aljabar, dengan menggunakan numeral Hindu-Arabik. Buku ini memberi dampak besar karena muncul dunia baru dengan angka-angka yang bisa menggantikan sistem Yahudi, Yunani dan Romawi dengan angka dan huruf untuk menghitung dan kalkulasi.

Pendahuluan buku berisi dengan bagaimana menentukan jumlah digit dalam satuan numeral atau tabel penggandaan (baca: perkalian) dengan angka sepuluh, dengan angka seratus dan seterusnya. Kalkulasi dengan menggunakan seluruh angka dan pembagian, pecahan, akar, bahkan penyelesaian persamaan garis lurus (linier) dan persamaan kuadrat. Buku itu dilengkapi dengan latihan dan aplikasi sehingga menggairahkan pembacanya. Dasar pedagang, ilustrasi dalam dunia bisnis dengan angka-angka juga disajikan. Termasuk di sini adalah pembukuan bisnis (double entry), penggambaran tentang marjin keuntungan, perubahan (konversi) mata uang, konversi berat dan ukuran (kalibrasi), bahkan menyertakan penghitungan bunga. (Pada jaman itu riba, masih dilarang). Penguasa pada saat itu, Frederick, yang terpesona dengan Liber Abaci, ketika mengunjungi Pisa, memanggil Fibonacci untuk datang menghadap. Dihadapan banyak ahli dan melakukan tanya-jawab dan wawancara langsung, Fibonacci memecahkan problem aljabar dan persamaan kuadrat.

Pertemuan dengan Frederick dan pertanyaan-pertanyaan yang diajukan oleh ahli-ahli tersebut, dibukukan dan diterbitkan tidak lama kemudian. Tahun 1225 dia mengeluarkan buku Liber Quadrotorum (buku tentang Kuadrat) yang dipersembahkannya untuk Sang raja. Dalam buku itu tercantum problem yang mampu mengusik “akal sehat” matematikawan yaitu tentang problem kelinci beranak-pinak Pertanyaan sederhana tapi diperlukan kejelian berpikir.

“Berapa pasang kelinci yang akan beranak-pinak selama satu tahun. Diawali oleh sepasang kelinci, apabila setiap bulan sepasang anak kelinci menjadi produktif pada bulan kedua”

- Akhir bulan kedua, mereka kawin dan kelinci betina I melahirkan sepasang anak kelinci beda jenis kelamin.
- Akhir bulan kedua, kelinci betina melahirkan sepasang anak baru, sehingga ada 2 pasang kelinci.
- Akhir bulan ketiga, kelinci betina I melahirkan pasangan kelinci kedua, sehingga ada 3 pasang kelinci.
- Akhir bulan keempat, kelinci betina I melahirkan sepasang anak baru dan kelinci betina II melahirkan sepasang anak kelinci, sehingga ada 5 pasang kelinci.

Akan diperoleh jawaban: 55 pasang kelinci. Bagaimana bila proses itu terus berlangsung seratus tahun? Hasilnya (contek saja): 354.224.848.179.261.915.075.

Apakah ada cara cepat untuk menghitungnya? Di sini Fibonacci memberikan rumus bilangan yang kemudian dikenal dengan nama deret Fibonacci.

Deret Fibonacci

Orang Kristen menolak angka nol; namun pedagang dalam melakukan transaksi membutuhkan angka nol. Alasan yang dipakai oleh Fibonacci adalah nol sebagai batas. Apabila diperoleh hasil negatif berarti kerugian. Orang yang mengenalkan angka nol ini ke dunia Barat adalah Leonardo dari Pisa. Meskipun ayahnya seorang Konsul sekaligus pedagang, profesi Fibonacci – tidak mau menjadi konsul, adalah seorang pedagang. Anak muda – yang lebih dikenal dengan nama Fibonacci – belajar matematika dari orang-orang Islam dan menjadi matematikawan piawai dengan cara belajar sendiri. Menemukan
deret bilangan yang diberi nama seperti namanya.
Deret Fibbonacci yaitu: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 …

Pola deret di atas terbentuk dari susunan bilangan berurutan (dari kecil makin besar) yaitu merupakan penjumlahan dua bilangan sebelumnya. Angka 3, urutan keempat, adalah hasil penjumlahan 1 (urutan 2) + 2 (urutan 3); angka 5 urutan kelima, adalah hasil penjumlahan 2 (urutan 3) + 3 (urutan 4); angka 8 urutan keenam, adalah hasil penjumlahan 3 (urutan 4) + 5 (urutan 5) dan seterusnya. Deret di atas mampu menjawab problem kelinci beranak-pinak, alur bunga lily, pola dan jumlah mata nanas, jumlah kelopak dan alur spiral bunga jenis-jenis tertentu. Lewat deret Fibonacci ini dapat diketahui diketahui urutan atau alur yang akurat pada alam. Ukuran ruangan binatang berkulit lunak (moluska) yang berbentuk spiral, nautilus *; jumlah searah jarum jam atau berlawanan jarum jam ‘mata‘ nanas, jumlah kelopak bunga matahari dan ada 2 alur spiral (ke kanan 34 dan ke kiri 55) sesuai dengan deret Fibonacci.

Kaitan dengan nisbah emas
Nisbah emas sudak dikenal sejak jaman Pythagoras. Disebutkan bahwa alam tampaknya diatur oleh nisbah emas. “Kesaktian” nisbah ini mendasari arsitektur bangunan jaman dahulu, khususnya di Yunani. Bentangan pilar dan tinggi Panthenon merupakan perbandingan hasil nisbah emas.
Perhatikan hasil pembagian bilangan-bilangan pada deret Fibonacci di bawah ini.

1/1; 2/1; 3/2; 5/3; 8/5; 13/8; 21/13; 34/21; 55/34; 89/55; 144/89…

Pola apa yang terjadi? Bilangan hasil pembagian menunjukkan sesuatu yang istimewa sehingga disebut dengan seksi emas (golden section). Nama ini mirip dengan nisbah emas. Memang ada hubungan erat antara seksi emas dan nisbah emas seperti dapat dilihat pada tabel dan gambar di bawah ini.

Deret 1 2 3 5 8 13 21 34 55 89 144
Pembagi 1 1 2 3 5 8 13 21 34 55 89
Hasil 1 2 1,5 1,66 1,6 1,625 1,615 1,619 1,617 1,618 1,618

Barangkali kenyataan ini mampu menjawab pertanyaan mengapa deret Fibonacci mendekati nisbah emas.

Ambil contoh dua bilangan: a, b, a+b (deret Fibonacci) dan b/a (nisbah emas) kemudian diperbandingkan

b/a ≈ (a+b)/b
b/a (nisbah emas) ≈ a/b + 1 (seksi emas)

Substitusikan nisbah emas dengan notasi Φ (phi) untuk persamaan di atas.

Φ = 1/Φ + 1 (kalikan ruas kiri dan kanan dengan F) hasil:
Φ² - Φ – 1 = 0

Φ = (1+ √5)/2 ≈ 1,618

Revolusi Fibonacci

Topik dalam buku Liber abaci juga menjelaskan proses aritmatik, termasuk cara mencari akar bilangan. Problem-problem dalam buku ini lebih ditekankan untuk penggunaan dalam transaksi perdagangan, sistem pecahan untuk menghitung pertukaran mata uang. Fibonacci menggunakan pecahan – biasa, bilangan berbasis enam puluh (seksadesimal) dan satuan – bukan bilangan berbasis sepuluh (desimal). Penulisan 5/12 28 biasa kita kenal sebagai 28 5/12. Dia juga menempatkan bilangan pecahan berupa komponen-kompenen yang belum dijumlah. Penulisan 115/6, sebagai contoh, ditulis dengan 1/3 ½ 11. Tidak puas dengan kebingungan ini pecahan satuan ternyata lebih membingungkan. Pecahan 98/100, sebagai contoh, dipecah menjadi 1/100 1/50 1/5 ¼ ½, dan 99/100 ditulis dengan 1/25 1/5 ¼ ½.

Sumbangsih
Mengenalkan angka nol dan menghitung pola-pola alam tidak lazim sekaligus memberi dasar pada pengenalan aljabar ke dunia Barat adalah sumbangsih terbesar Fibonacci. Mampu menciptakan deret Fibonacci yang memberi jawaban atau alasan tentang pola alam seperti yang dijabarkan dalam nisbah emas. Adopsi angka nol untuk penulisan dan melakukan perhitungan di Eropa – mengubah sistem bilangan Romawi yang tidak efisien – dengan sistem bilangan Hindu-Arabik ini kelak sangat mempengaruhi perkembangan matematika di benua Eropa. Sistim bilangan pecahan Fibonacci yang rumit, kemudian disederhanakan untuk kepentingan perdagangan. Perhatikanlah perubahan harga saham-saham yang diperdagangkan di Wall Street menggunakan sistem pecahan.


Referensi :

- http://mate-mati-kaku.com/matematikawan/fibonacci.html